Genetic Algorithms and its use with back-propagation network

نویسندگان

  • Ayman M. Bahaa Eldin
  • Abdel-Moneim A. Wahdan
  • Hani M. K. Mahdi
چکیده

Genetic algorithms are considered as one of the most efficient search techniques. Although they do not offer an optimal solution, their ability to reach a suitable solution in considerably short time gives them their respectable role in many AI techniques. This work introduces genetic algorithms and describes their characteristics. Then a novel method using genetic algorithm in best training set generation and selection for a back-propagation network is proposed. This work also offers a new extension to the original genetic algorithms صخلم ءادلأا ةيحان نم ثحبلا قرط لضفأ نم ةدحاو ةينيجلا تامزراوخلا ربتعت . لحلا يطعي لا ةقيرطلا هذه مادختسا نأ نم مغرلابف لثملأا , ءاكذلا تايممع نم ريثك يف ماهلا اهرود ةقيرطلا هذه يطعي اًدج ريصق نمز يف بسانم لحل مزراوخلا لوصو نأ لاإ يعانطصلاا . وقن ثحبلا اذه يفو مادختسلا ةركتبم ةقيرط ميدقتب كلذ دعب موقن مث ةينيجلا تامزراوخمل عيرس ضرعب م يسكعلا راشتنلاا عون نم ةيبصع ةكبشل ميمعت ةعومجم لضفأ ءاقتنلا ةينيجلا تامزراوخلا . حا رتقا مت ةقيرطلا هذهل لوصوملو ةيمصلأا ةينيجلا تامزراوخمل ريوطت

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network

Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

پیش‌‌بینی کوتاه مدت قیمت تراکم گرهی در یک سیستم قدرت بزرگ تجدید ساختار یافته با استفاده از شبکه‌های عصبی مصنوعی با بهینه‌سازی آموزش ژنتیکی

In a daily power market, price and load forecasting is the most important signal for the market participants. In this paper, an accurate feed-forward neural network model with a genetic optimization levenberg-marquardt back propagation (LMBP) training algorithm is employed for short-term nodal congestion price forecasting in different zones of a large-scale power market. The use of genetic algo...

متن کامل

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1401.5246  شماره 

صفحات  -

تاریخ انتشار 2010